Effects of a novel poly (AA-co-AAm)/AlZnFe₂O₄/potassium humate superabsorbent hydrogel nanocomposite on water retention of sandy loam soil and wheat seedling growth.

نویسندگان

  • Shaukat Ali Shahid
  • Ansar Ahmad Qidwai
  • Farooq Anwar
  • Inam Ullah
  • Umer Rashid
چکیده

A novel poly(acrylic acid-co-acrylamide)AlZnFe₂O₄/potassium humate( )superabsorbent hydrogel nanocomposite (PHNC) was synthesized and its physical properties characterized using SEM, Energy Dispersive X-ray (EDX) and FTIR spectroscopic techniques. Air dried sandy loam soil was amended with 0.1 to 0.4 w/w% of PHNC to evaluate its soil moisture retention attributes. Effect of PHNC amendment on pH, electrical conductivity (EC), porosity, bulk density and hydraulic conductivity of sandy loam soil was also studied. The soil amendment with 0.1 to 0.4 w/w% of PHNC remarkably enhanced the moisture retention at field capacity as compared to the un-amended soils. Seed germination and seedling growth of wheat (Triticum aestivum L.) was considerably increased and a delay by 6-9 days in wilting of seedlings was observed in the soil amended with PHNC, resulting in improved wheat plant establishment and growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized u...

متن کامل

Swelling Characterization of Nanocomposite Hydrogels of Poly (acrylamide-N-vinylimidazole)

In this study, a hydrogel composed of acrylamide (AAm) with N-vinylimidazole (NVI) as co-monomer, with a cross-linker such as N, N` Methylenebisacrylamide and potassium peroxodisulfate as an initiator solution was prepared. Poly (AAm/NVI) hydrogels were synthesized by free radical solution polymerization. Swelling experiments were performed in water at 25°C, gravimetrically. Here, it was of...

متن کامل

Montmorillonite Nanocomposite Hydrogel Based on Poly(acrylicacid-co-acrylamide): Polymer Carrier for Controlled Release Systems

In this paper, the synthesis of new montmorillonite nanocomposite hydrogel (MMTNH) based on poly (acrylic acid-co-acrylamide) grafted onto starch, is described. Montmorillonite (MMT) as nanometer base, acrylic acid (AA) and acrylamide (AAm) as monomers, ammonium persulfate (APS) as an initiator, N,N-methylenebisacrylamide (MBA) as a crosslinker and starch as a biocompatible polymer were pre...

متن کامل

Synthesis, characterization and swelling behaviour of poly(acrylamide-co- methacrylic acid) grafted Gum ghatti based superabsorbent hydrogels

A mixture of acrylamide (AAm) and methacrylic acid (MAA) was crosslinked onto Gum ghatti (Gg) using N, N’-methylene-bis-acrylamide (MBA) as a crosslinker and ascorbic acid (ABC) and potassium persulphate (KPS) redox pair as an initiator. Optimized reaction parameters for the graft copolymerization of Gum ghatti with AAm were time (min)=90; temperature (C)=50; pH=7.0; deionized water (ml)=10; mo...

متن کامل

An Enhanced Drought-Tolerant Method Using SA-Loaded PAMPS Polymer Materials Applied on Tobacco Pelleted Seeds

Drought is one of the most important stress factors limiting the seed industry and crop production. Present study was undertaken to create novel drought-resistant pelleted seeds using the combined materials with superabsorbent polymer, poly(2-acrylamide-2-methyl propane sulfonic acid) (PAMPS) hydrogel, and drought resistance agent, salicylic acid (SA). The optimized PAMPS hydrogel was obtained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2012